




Total

www.sathyabama.ac.in

| SAEX 1029 | AIRCRAFT NAVIGATION, GUIDANCE | L | Т | Р | Credits | Marks |
|-----------|-------------------------------|---|---|---|---------|-------|
|           | AND CONTROL                   | 3 | 0 | 0 | 3       | 100   |
|           |                               |   |   |   |         |       |

#### **UNIT I INERTIAL SENSORS**

Gyroscopes-Mechanical-electromechanical-Ring Laser gyro- Fiber optic gyro, Accelerometers

#### UNIT II INERTIAL NAVIGATION SYSTEMS

INS components: transfer function and errors-The earth in inertial space, the coriolis effect-Mechanisation. Platform and Strap down, INS system block diagram, Different co-ordinate systems, Schuler loop, compensation errors, Gimbal lock, Alignment.

#### UNIT III RADIO NAVIGATION

Different types of radio navigation- ADF, VOR/DME- Doppler -LORAN, DECCA and Omega -TACAN

#### UNIT IV APPROACH AND LANDING AIDS

ILS, MLS, GLS - Ground controlled approach system - surveillance systems-radio altimeter, RNAV, Modern Navigation Aids

#### **UNIT V SATELLITE NAVIGATION & HYBRID NAVIGATION** 10 hrs

Introduction to GPS -system description -basic principles -position and velocity determination-signal structure-DGPS, Introduction to Kalman filtering-Estimation and mixed mode navigation-Integration of GPS and INS-utilization of navigation systems in aircraft

#### (Computational problems must be given as assignments for each unit)

#### **REFERENCES:**

- 1. Myron Kyton, Walfred Fried, 'Avionics Navigation Systems', John Wiley & Sons,2<sup>nd</sup> edition, 1997
- 2. Nagaraja, N.S. "Elements of Electronic Navigation", Tata McGraw-Hill Pub. Co., New Delhi, 2<sup>nd</sup> edition, 1975.
- 3. George M Siouris, 'Aerospace Avionics System; A Modern Synthesis', Academic Press Inc., 1993.
- 4. Albert Helfrick, 'Practical Aircraft Electronic Systems', Prentice Hall Education, Career & Technology, 1995.
- 5. Albert D. Helfrick, 'Modern Aviation Electronics', Second Edition, Prentice Hall Career & Technology, 1994.
- 6. Sen, A.K. & Bhattacharya, A.B. "Radar System and Radar Aids to Navigation", Khanna Publishers, 1988.
- 7. Slater, J.M. Donnel, C.F.O and others, "Inertial Navigation Analysis and Design", McGraw-Hill Book Company, New York, 1964.

10 hrs

10 hrs

10 hrs





**OF SCIENCE AND TECHNOLOGY** 

(DEEMED TO BE UNIVERSITY) Accredited with "A" Grade by NAAC Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600 119. Phone: 044 - 2450 3150 / 51 / 52 / 54 / 55 Fax: 044 - 2450 2344 www.sathyabama.ac.in



Total Р L Т Credits Marks **ROCKETS AND MISSILES SAEX1021** 3 3 0 0 100

#### **UNIT I ROCKETS SYSTEM**

Ignition System in rockets - types of Igniters - Igniter Design Considerations - Design Consideration of liquid Rocket Combustion Chamber, Injector Propellant Feed Lines, Valves, Propellant Tanks Outlet and Helium Pressurized and Turbine feed Systems - Propellant Slash and Propellant Hammer -Elimination of Geysering Effect in Missiles - Combustion System of Solid Rockets.

## UNIT II AERODYNAMICS OF ROCKETS AND MISSILES

Airframe Components of Rockets and Missiles - Forces Acting on a Missile While Passing Through Atmosphere- Classification of Missiles - methods of Describing Aerodynamic Forces and Moments -Lateral Aerodynamic Moment Lateral Damping Moment and Longitudinal Moment of a Rocket - lift and Drag Forces - Drag Estimation - Body Upwash and Downwash in Missiles - Rocket Dispersion -Numerical Problems.

#### UNIT III ROCKET MOTION IN FREE SPACE AND GRAVITATIONAL FIELD 10 hrs

One Dimensional and Two Dimensional rocket Motions in Free Space and Homogeneous Gravitational Fields - description of Vertical, Inclined and Gravity Turn Trajectories - Determination of range and Altitude Simple Approximations to Burnout Velocity.

#### UNIT IV STAGING AND CONTROL OF ROCKETS AND MISSILES 10 hrs

Rocket Vector Control - Methods, SITVC termination, Thrust determination, Multi staging of rockets - Vehicle Optimization - Stage Separation Dynamics - Separation Techniques, Types of aerodynamics control in missiles

#### UNIT V MATERIALS FOR ROCKETS AND MISSILES

Selection of Materials - Special Requirements of Materials to Perform under Adverse Conditions.

## (Computational problems must be given as assignments for each unit)

#### **TEXT BOOK:**

1. Sutton, G.P., et al., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 1993.

#### **REFERENCE BOOKS:**

- 1. Mathur, M., and Sharma, R.P., "Gas Turbines and Jet and Rocket Propulsion", Standard Publishers, New Delhi 1998.
- 2. Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W., Freeman & Co. Ltd., London, 1982.
- 3.Parket, E.R., "Materials for Missiles and Spacecraft", McGraw-Hill Book Co. Inc., 1982

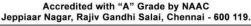
#### 10 hrs

#### 10 hrs





AERO CAD LAB – I Total Р L Т Credits Using any Softwares like PRO/E, Marks **SAEX4001** CATIA, Solid Works, ANSYS, 0 0 3 3 100 MSC / Nastran


## LIST OF EXPERIMENTS:

- 1. Modelling of various components using any modelling software
- 2. Static analysis on cantilever beam
- 3. Static analysis of forces in a simply supported beam
- 4. Static analysis- Plane truss
- 5. 2-D static stress analysis
- 6. 3-D static stress analysis
- 7. Stress distribution in a shrink fit
- 8. Natural frequencies of a spring mass system
- 9. Stress and modal analysis of a cylinder under pressure
- 10. Stress distribution and natural frequencies in indeterminate structure
- 11. Analysis of a model airplane wing





(DEEMED TO BE UNIVERSITY)





Phone: 044 - 2450 3150 / 51 / 52 / 54 / 55 Fax: 044 - 2450 2344 www.sathyabama.ac.in

| SAEX4004 | Aero Modelling Lab | L | Т | Р | Credits | Total<br>Marks |
|----------|--------------------|---|---|---|---------|----------------|
|          |                    | 0 | 0 | 3 | 3       | 100            |

## LIST OF EXPERIMENTS:

- 1. Study about historical background of airplanes
- 2. Component of airplanes and its function
- 3. Construction of glider
- 4. Construction of wings
- 5. Construction of Fuselage
- 6. Construction of tail plane
- 7. Assembly of a plane
- 8. Mounting of engine and controls
- 9. Training in flight manoeuvring through computer simulation
- 10. Testing of trainer flight model

|  | SAEX 1036 | ADVANCED CONTROL SYSTEM<br>DESIGN FOR AEROSPACE | L T P Credits   3 0 0 3 | Credits | Total<br>Marks |
|--|-----------|-------------------------------------------------|-------------------------|---------|----------------|
|  |           | VEHICLES                                        |                         | 0       | 0              |

## **UNIT I INTRODUCTION**

Introduction and Motivation for Modern Control Design- Review of Classical Control Systems-Introduction to Basic Flight Mechanics and Flight Control Systems.-State Space Representation of Dynamical Systems.

## **UNIT II NON LINEAR SYSTEMS**

Linearization of Nonlinear Systems, Linearized Flight Mechanics-Review of Matrix Theory-time Response of Dynamical Systems in State Space form-Stability of Linear Systems-Controllability and Observability of Linear Systems. 10 hrs

#### **UNIT III CONTROL SYSTEM DESIGN**

Pole Placement Control Design.-Pole Placement Observer Design - Static Optimization -Optimal Control Formulation; Linear Quadratic Regulator (LQR) Design- Application of Linear Control Theory to Autopilot Design of Aircrafts and Missiles-Gain Scheduling and Dynamic Inversion Design.

#### **UNIT IV STABILITY ANALYSIS & LYAPUNOV THEORY**

Stability Analysis of Nonlinear Systems Using Lyapunov Theory-Neuro-Adaptive Design for Nonlinear Systems-Advanced Nonlinear Control of Aerospace Vehicles Using Dynamic Inversion and Neuro-Adaptive Design.

#### UNIT V NONLINEAR CONTROL DESIGN

Nonlinear Control Design Using Back-stepping-An Overview of LQ Observer and Kalman Filtering-Nonlinear Observer Design.

#### (Computational problems must be given as assignments for each unit)

#### REFERENCES

1. N. S. Nise: Control Systems Engineering, 4th Ed., Wiley, 2004.

- 2. K. Ogata: Modern Control Engineering, 3rd Ed., Prentice Hall, 1999.
- 3. B. Friedland: Control System Design, McGraw Hill, 1986.
- 4. E. Bryson and Y-C Ho: Applied Optimal Control, Taylor and Francis, 1975

5. Mathukumalli Vidyasagar, Nonlinear systems analysis, 2<sup>nd</sup> Edition, SIAM, 2002

6.Hassan K. Khalil, Nonlinear systems, Macmillan Pub. Co., 1992

**OF SCIENCE AND TECHNOLOGY** (DEEMED TO BE UNIVERSITY) Accredited with "A" Grade by NAAC Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600 119.

Phone: 044 - 2450 3150 / 51 / 52 / 54 / 55 Fax: 044 - 2450 2344 www.sathyabama.ac.in



#### 10 hrs

#### 10 hrs

10 hrs

(DEEMED TO BE UNIVERSITY) Accredited with "A" Grade by NAAC Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600 119. Phone: 044 - 2450 3150 / 51 / 52 / 54 / 55 Fax: 044 - 2450 2344

www.sathyabama.ac.in

| SAEX 1038 | FLIGHT CONTROL SYSTEM | L | Т | Р | Credits | Total<br>Marks |
|-----------|-----------------------|---|---|---|---------|----------------|
|           | DESIGN                | 3 | 0 | 0 | 3       | 100            |

**UNIT I INTRODUCTION TO CONTROL SYSTEM DESIGN & FCS** Open vs. Closed Loop Control - Analogue, Digital and Logical Control - Industrial Controllers -Control System Design Objectives - Control System Design Cycle - Introduction to Flight Control Systems - History of FCS - Guidance, Navigation and Control - Flight Control Channels - Flight Control Methods - SAS vs. Autopilot

## UNIT II AERODYNAMIC CONSIDERATIONS OF FLIGHT CONTROL SYSTEMS 10 hrs

Static and Dynamic Stability - Stability and Maneuverability - Static Margin - Variations of the Center of Pressure - Hinge Moment - Aeroelastic Effects- Control System Performance - Canard Control - Wing Control - Tail Control - Fin Configuration Effects- Side Jet Control-Thrust -Vector Control - Variation of Mass and CG

## **UNIT III SENSORS & ACTUATORS**

Flight Control Sensors - Accelerometers- Gyroscopes-Angle of attack vane - Other sensors - Sensor Selection-Flight Control Actuators- Servomechanism- Reversible vs. Irreversible --Mechanisms-Hydraulic Actuators-Pneumatic Actuators- Electric Actuators

## UNIT IV CONTROLLER DESIGN

An Overview of Controller Design-Design Using Frequency Response-Design Using Root Locus-Pole Placement Methods-Linearization and Transfer Functions of Flying Vehicles- Coordinate Systems-Equations of Motion-Roll, Pitch and Yaw Transfer Functions-Design of Aerodynamic Control System for Missiles-STT vs. BTT -Lateral Control System Design for STT-Roll Control-Control System Design for BTT-MIMO Based Design-Design of Single Channel Flight Control Systems

## UNIT V AIRCRAFT CONTROL SYSTEM DESIGN

Longitudinal Control-Lateral Control- Attitude Control Systems -Flight Path Control Systems- Active Control Systems - Thrust Vector Control - Classifications and Applications - Mathematical Modeling -Control Architectures - Controller Design- Miscellaneous Topics - Sensitivity Analysis-Man in the Loop considerations-Parameter Optimization

## (Computational problems must be given as assignments for each unit)

## **TEXT BOOKS:**

- 1. Garnell, P., "Guided Weapon Control Systems", 2nd Edition, Pergamon Press, 1980.
- 2. McLean, D., "Automatic Flight Control Systems", Prentice Hall International (UK) Ltd, 1990.
- 3. Blakelock, J. H.; Automatic Control of Aircraft and Missiles, 2nd Edition, John Wiley & Sons, 1990.

SCIENCE AND TECHNOLOG



#### 10 hrs

# 10 hrs

10 hrs